

## "High-p<sub>T</sub>" measurements from the RHIC Beam Energy Scan

Stephen Horvat

Yale University







#### **Outline**



- Introduction
  - Beam Energy Scan (BES)
  - Detectors/Data
  - High-p<sub>⊤</sub> motivation
- Fractional energy loss (S<sub>loss</sub>)
- Nuclear modification factor (R<sub>CP</sub>)
  - Charged hadron
  - Identified
- N<sub>part</sub> scaled high p<sub>T</sub> yield (Y)
- Other (not "high-p<sub>T</sub>") results from BES I
- BES II
- Summary





## Beam Energy Scan

- At what energy do key QGP formation signatures turn off?
- Is there a critical point and if so where?

 Is there evidence for a first order phase transition?





# Detectors for RHIC BES I



RHIC



#### Data



- These data are from phase 1 of the BES at RHIC
- In 2018-2019 phase 2 of the BES will provide additional statistics and energies in Au+Au for  $\sqrt{s_{\rm NN}} < 20 {\rm GeV}$







## High-p<sub>T</sub> motivation

T.C. Awes, ORNL XXVIII



nPDF

hard scattering Cronin-like enhancement nuclear E-loss partonic E-loss radial flow

fragmentation coalescence hadronic E-loss









- Direct relationship to partonic energy loss
- Same R<sub>AA</sub> means different energy loss if spectra are more steeply falling



## Sloss





- Nearly constant fractional energy loss for each centrality
- Larger fractional energy loss for more central collisions



## Sloss





part

 Increasing fractional energy loss with N<sub>part</sub> and collision energy





## State of world's R<sub>AA</sub>

 R<sub>CP</sub> is used in the BES when there is not a p+p reference







## Suppression of high p<sub>T</sub>

$$R_{CP} = \frac{}{}$$



STAR: Phys. Rev. Lett. 91, 172302 (2003)

high  $p_T$  charged hadrons are suppressed at  $\sqrt{s_{NN}} = 200 \text{GeV}$ 

'Suppression' ≡ R<sub>CP</sub> < 1

'Quenching' ≡ loss of energy for high momentum particles



#### d+Au for Cold Nuclear Matter



(CNM)



The 'Cronin Effect' is the experimentally observed enhancement of spectra in p+A collisions relative to a p+p reference

PRL 68, 452 (1992) Straub





## BES I Charged Hadron R<sub>CP</sub>





• Enhancement effects compete against suppression effects concealing the turn off of QGP formation at low  $\sqrt{s_{\rm NN}}$ 



### An incomplete list of possible Enhancement Effects



- Anti-Shadowing
- k<sub>T</sub> smearing
- Radial Flow
- Coalescence

• ...





## Coalescence vs Fragmentation

#### Quark (parton) coalescence



D. Molnar and S. A. Voloshin, **PRL91**, 092301 (2003), R. C. Hwa and C. B. Yang, **PRC66**, 025205 (2002), V. Greco et al, **PRL90**, 202302 (2003), R. J. Fries et al, **PRL90**, 202303 (2003), ....

- Hadron productions by quark coalescence picture
- Specific scaling pattern for meson and baryon v<sub>2</sub>
   Hiroshi Masui HHIQCD2015

H. Masui / Univ. of Tsukuba

12/31





## Coalescence vs Fragmentation



- coal. + frag does well at top RHIC and LHC energies
- Can particles in the BES reach momenta where a significant fraction come from fragmentation?









- Pions are less modified by coalescence and other enhancement effects than protons
- → better QGP probe?



## BES I Strange Hadron R<sub>CP</sub>





- R<sub>CP</sub> particle type dependence becomes less significant as energy is reduced
- Strange hadrons look similar to protons and pions dependence on baryon/meson







Centrality dependence decreases with energy









Centrality dependence decreases with energy



## $\pi^0 R_{AA} (N_{part})$



- High-p<sub>T</sub> R<sub>AA</sub> decreases with centrality
- → Suppression effects increase faster than enhancement effects with increasing N<sub>part</sub>
- There is a common factor from the p+p data that does not effect the shape of these distributions





- Y(N<sub>part</sub>) takes a projection at high-p<sub>T</sub> of the numerator from R<sub>CP</sub> and investigates its centrality dependence
- This is preferable to R<sub>CP</sub>(N<sub>part</sub>) since the peripheral spectra would be a common factor and with large error bars

$$Y(N_{part}) = \left(\frac{d^2N}{\langle N_{coll}\rangle dp_T d\eta}\right)_{high-p_T bin}$$

Au + Au Central





Provides possible evidence for where a QGP is formed

N<sub>coll</sub> ≡ number of binary collisions (from Glauber MC)





 If the "high-p<sub>T</sub>" region scales with N<sub>coll</sub> such that we can consider the Au+Au collision to be a linear superposition of p+p-like collisions then we would expect Y(N<sub>part</sub>) to be flat at unity

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_Td\eta}\right)_{high-p_T\,bin}$$





- If there are enhancement effects that grow stronger as you go more central then you would expect Y(N<sub>part</sub>) to increase with N<sub>part</sub>
  - Radial Flow
  - Coalescence

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_Td\eta}\right)_{high-p_T bin}$$





 Suppression that grows stronger as you go more central would give:

$$Y(N_{part}) = \left(\frac{d^2N}{N_{coll}dp_Td\eta}\right)_{high-p_T\,bin}$$





- Enhancement and suppression effects compete against each other
- Y(N<sub>part</sub>) measures the net change in these as a function of centrality
- If enhancement grows faster initially but suppression effects become more dominant as you go more central (or enhancement effects become weaker) then there will be a turnover in Y(N<sub>part</sub>)
- The suppression is measured relative to a centrality that contains enhancement effects (Cronin, Radial Flow, etc.) rather than a p+p-like system

$$Y(N_{part}) = \left(\frac{\mathrm{d}^2 N}{N_{coll} \mathrm{dp_T d\eta}}\right)_{high-p_T bin}$$

## S. Horvat, QM2015 **7** 19.6 <del>¥</del>27 39 62.4 ¥ 200 dpٍdŋ (arb. scale) STAR Preliminary landandandanlandandandan 100 150 200 250 300 350 400

#### $Y(N_{part})$ 3.0 < $p_T$ < 3.5 GeV/c

- Most central data are suppressed (turnover) for  $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$ 
  - This does not rule out the formation of a QGP at lower energies than 14.5 GeV
- 7.7 and 11.5 GeV results increase monotonically
- 200 GeV results decrease monotonically

Error bands are correlated uncertainties

## S. Horvat, QM2015 3.0 < p\_ < 3.5 GeV/c |s<sub>NN</sub> = 7.7 GeV 14.5 Zooming in on 14.5 GeV 39 62.4 2.6 + 200 յզբ\_dŋ (arb. scale) Au+Au STAR Preliminary

#### $Y(N_{part})$ 3.0 < $p_T$ < 3.5 GeV/c

- Most central data are suppressed (turnover) for  $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$ 
  - This does not rule out the formation of a QGP at lower energies than 14.5 GeV
- 7.7 and 11.5 GeV results increase monotonically
- 200 GeV results decrease monotonically

Error bands are correlated uncertainties

#### S. Horvat, QM2015 4.0 < p\_ < 4.5 GeV/c ♦ √s<sub>NN</sub> = 7.7 GeV **14.5 7** 19.6 ¥27 39 62.4 ¥ 200 dp<sub>-</sub>dη (arb. scale) Au+Au STAR Preliminary 100 150 200 250 300 350 400

### $Y(N_{part})$ 4.0 < $p_T$ < 4.5 GeV/c

- Most central data are suppressed for  $\sqrt{s_{NN}} \ge 14.5 \text{ GeV}$
- This method is sensitive to charged hadron suppression to a lower energy than previous techniques
- To prove the suppression is due to quenching, possible contributions from hadronic energy loss and impact parameter dependent nPDFs need further investigation
- Looking forward to d+Au at BES energies





#### Other BES I Results



- Bjorken energy density \* τ > 1 GeV/(fm² c) in central collisions for entire BES
  - power law scaling





#### Other BES I Results



Transverse energy scales better with quark participants than participating nucleons





## Other BES I Results





#### **BES II**



- Increased RHIC luminosity
- Fixed target installed in STAR



Baryon'Chemical'Potential'MB



- Event Plane Detector, 1.8 < |η| < 5</li>
  - Trigger, event plane, centrality
    - suppress backgrounds on flow measurements, independent centrality determination
- inner TPC upgrade
  - increase TPC acceptance from 1 to 1.5 in η
- improve dE/dx resolution → better PID
- ETOF, improve PID at forward rapidity

H. Masui / Univ. of Tsukuba

28/31

34



#### Conclusions

- While there is strong evidence for partonic energy loss at high energy, enhancement effects decrease sensitivity to partonic energy loss at lower energies
- Mesons may be less sensitive to these enhancement effects
- Considering suppression relative to midcentral collisions may help disentangle enhancement and suppression effects
- We are looking forward to BES II







## Thank you!







# Backups





## Baryon/Meson Ratio : $\overline{\Lambda}/K_s^0$



#### Baryon/Meson Ratio p-bar/π







#### Coalescence vs Fragmentation

#### Quark (parton) coalescence



 $p_T^h < p_T^q$ 

D. Molnar and S. A. Voloshin, **PRL91**, 092301 (2003), R. C. Hwa and C. B. Yang, **PRC66**, 025205 (2002), V. Greco et al, **PRL90**, 202302 (2003), R. J. Fries et al, **PRL90**, 202303 (2003), ....

$$v_2^h(p_T) \approx n_q v_2^q(p_T/n_q)$$

Hadron productions by quark coalescence picture

10<sup>-7</sup>

Specific scaling pattern for meson and baryon v<sub>2</sub>
 Hiroshi Masui HHIQCD2015

H. Masui / Univ. of Tsukuba

p<sub>+</sub> (GeV/c)

12/31